Data: 27/10/2021
Título: Teoria de Ramsey em grupos.
Palestrante: Roberto Parente, UFBA e USP.
Data: 27 de Outubro de 2021, 14 h.
Sala: Google Meet.
Resumo: Em Teoria de Ramsey estamos interessados em, dada uma estrutura matemática, garantir que qualquer coloração de seus elementos sempre existirá uma subestrutura de interesse monocromática. A pergunta desta apresentação é como inserir relações entre as cores utilizando grupos (abelianos). Faremos um breve panorama sobre resultados da Teoria de Ramsey em grupos onde o tipo de problema estudado é o seguinte: dado um grupo G e um grafo H, R(H,G) é o menor inteiro positivo t tal que toda coloração das arestas do grafo completo K_t usando elementos de G como cores possui um subgrafo isomorfo a H tal que a soma das ‘cores’ das arestas de H é 0 (em G). Para quais pares (G,H) esse número existe, e, nesse caso, quão precisamente podemos estimar seu valor?
Veja: Vídeo