Data: 29/10/2025
Título: Type 1 and Type 2 Kochol superposition snarks.
Palestrante: Rieli Araújo Souza, UFRJ.
Data: 29 de outubro de 2025 (adiado para 6 de novembro de 2025) às14:30 h.
Resumo: Snarks are a historical class of cubic graphs with intriguing structural properties, originally motivated by the Four-Color Theorem. For almost a century, since their definition by Peter Guthrie Tait in 1880, only five examples were known, which inspired Martin Gardner in 1976 to refer to them as snarks, mysterious creatures in graph theory.
In 1975, Rufus Isaacs introduced a construction method known as the dot product, which allowed obtaining new snarks from known ones and provided the first infinite family of snarks. Later, in 1996, Martin Kochol proposed a new construction technique, known as Kochol superposition, capable of generating snarks from smaller graphs. However, this method has been commonly applied to produce snarks with large girth.
Neste trabalho, investigamos as superposições de Kochol dos tipos 1 e 2, analisando suas propriedades e apresentando novos resultados relacionados à construção de snarks.
Trabalho em conjunto com Celina de Figueiredo, Diana Sasaki e Simone Dantas. Esta será a apresentação de ensaio para o LAGOS 2025.
Obs: Vídeo




















voltar